Science-EasyView

De novo design of protein interactions with learned surface fingerprints

학습된 surface fingerprints와 단백질 상호작용의 새로운 설계

De novo design of protein interactions with learned surface fingerprints

Abstract

단백질 간의 물리적 상호작용은 생명체를 지배하는 대부분의 생물학적 과정에 필수적입니다. 그러나 genomic, proteomic 및 structural 데이터가 증가함에도 불구하고 이러한 상호작용의 분자적 결정 요인을 이해하기는 어려웠습니다. 이러한 지식 격차는 cellular protein–protein interaction 네트워크에 대한 포괄적인 이해와 합성 생물학 및 번역 응용 분야에 중요한 단백질 결합체의 신규 설계에 큰 장애물이 되어 왔습니다. 여기서는 단백질 표면에서 작동하는 기하학적 딥러닝 프레임워크를 사용하여 protein–protein interaction을 유도하는 데 중요한 기하학적 및 화학적 특징을 설명하는 지문을 생성합니다. 우리는 이러한 지문이 새로운 단백질 상호 작용의 계산 설계에서 새로운 패러다임을 나타내는 분자 인식의 핵심 측면을 포착한다는 가설을 세웠습니다. 원칙을 증명하기 위해, 우리는 네 가지 단백질 표적과 결합하는 몇 가지 새로운 단백질 결합체를 컴퓨터로 설계했습니다: SARS-CoV-2 spike, PD-1, PD-L1 및 CTLA-4. 몇몇 디자인은 실험적으로 최적화한 반면, 다른 디자인은 순수하게 in silico로 생성되어 구조 및 돌연변이 특성화를 통해 nanomolar affinity에 도달하여 매우 정확한 예측을 보여주었습니다. 전반적으로 surface-centric approach는 molecular recognition의 물리적, 화학적 결정 요인을 포착하여 단백질 상호 작용과 더 넓게는 기능을 갖춘 인공 단백질의 새로운 설계를 위한 접근 방식을 가능하게 합니다.

 

REF

Exit mobile version